Electro-optical mechanically flexible coaxial microprobes for minimally invasive interfacing with intrinsic neural circuits.
Spencer WardConor RileyErin M CareyJenny NguyenSadik EsenerAxel NimmerjahnDonald J SirbulyPublished in: Nature communications (2022)
Central to advancing our understanding of neural circuits is developing minimally invasive, multi-modal interfaces capable of simultaneously recording and modulating neural activity. Recent devices have focused on matching the mechanical compliance of tissue to reduce inflammatory responses. However, reductions in the size of multi-modal interfaces are needed to further improve biocompatibility and long-term recording capabilities. Here a multi-modal coaxial microprobe design with a minimally invasive footprint (8-14 µm diameter over millimeter lengths) that enables efficient electrical and optical interrogation of neural networks is presented. In the brain, the probes allowed robust electrical measurement and optogenetic stimulation. Scalable fabrication strategies can be used with various electrical and optical materials, making the probes highly customizable to experimental requirements, including length, diameter, and mechanical properties. Given their negligible inflammatory response, these probes promise to enable a new generation of readily tunable multi-modal devices for long-term, minimally invasive interfacing with neural circuits.
Keyphrases
- minimally invasive
- inflammatory response
- small molecule
- high speed
- high resolution
- neural network
- robot assisted
- fluorescence imaging
- living cells
- single molecule
- signaling pathway
- white matter
- multiple sclerosis
- optic nerve
- immune response
- photodynamic therapy
- machine learning
- tissue engineering
- subarachnoid hemorrhage
- toll like receptor
- fluorescent probe