Login / Signup

Effect of non-adhering dressings on promotion of fibroblast proliferation and wound healing in vitro.

Cornelia WiegandMartin AbelUta-Christina HiplerPeter Elsner
Published in: Scientific reports (2019)
Non-adhering dressings are commonly used during granulation, tissue formation, and re-epithelialization. Elucidating cytotoxic effects and influence on proliferation/migration capacity of cells like fibroblasts is of interest. Dressings' effects were investigated by comprehensive in vitro approach: (1) MTT assay measuring cell viability after direct contact, (2) ATP assay determining effects on cell proliferation, and (3) scratch wound assay featuring an in vitro wound healing model. One cotton-based dressing with vaseline (vas) was included in the study and four polyester dressings containing vas and technology-lipido-colloid matrix (TLC), carboxymethylcellulose (CMC), hydrocolloid (HC), or glycerin (gly) as additives. A polyamide dressing with vas + CMC and three silicone-based dressings (AT, CC, M) were tested. Polyester + vas + CMC did not negatively affect cell viability or proliferation but it was found that fibroblast layers appeared more irregular with decreased F-actin network structure and tubulin density possibly leading to hampered scratch closure. Silicone AT, polyester + gly and polyamide + vas + CMC caused distinct cell damage. The latter two further reduced cell viability, proliferation and scratch healing. From the overall results, it can be concluded that cotton + vas, polyester + TLC, polyester + vas + HC and the silicone dressings CC and M have the potential to prevent damage of newly formed tissue during dressing changes and positively influence wound healing.
Keyphrases
  • wound healing
  • signaling pathway
  • cell proliferation
  • high throughput
  • induced apoptosis
  • oxidative stress
  • single cell
  • cell cycle arrest
  • pi k akt
  • risk assessment
  • bone marrow
  • cell migration
  • human health
  • high speed