Login / Signup

Long-Term Oral Treatment with Non-Hypoglycemic Dose of Glibenclamide Reduces Diabetic Retinopathy Damage in the Goto-KakizakiRat Model.

Marianne BerdugoKimberley DelaunayCécile LebonMarie-Christine NaudLolita RadetLéa ZennaroEmilie PicardAlejandra DaruichJacques BeltrandElsa Kermorvant-DucheminMichel PolakPatricia CrisantiFrancine F Behar-Cohen
Published in: Pharmaceutics (2021)
Diabetic retinopathy (DR) remains a major cause of vision loss, due to macular edema, retinal ischemia and death of retinal neurons. We previously demonstrated that acute administration of glibenclamide into the vitreous, or given orally at a non-hypoglycemic dose, protected the structure and the function of the retina in three animal models that each mimic aspects of diabetic retinopathy in humans. In this pilot study, we investigated whether one year of chronic oral glibenclamide, in a non-hypoglycemic regimen (Amglidia®, 0.4 mg/kg, Ammtek/Nordic Pharma, 5 d/week), could alleviate the retinopathy that develops in the Goto-Kakizaki (GK) rat. In vivo, retinal function was assessed by electroretinography (ERG), retinal thickness by optical coherence tomography (OCT) and retinal perfusion by fluorescein and indocyanin green angiographies. The integrity of the retinal pigment epithelium (RPE) that constitutes the outer retinal barrier was evaluated by quantitative analysis of the RPE morphology on flat-mounted fundus ex vivo. Oral glibenclamide did not significantly reduce the Hb1Ac levels but still improved retinal function, as witnessed by the reduction in scotopic implicit times, limited diabetes-induced neuroretinal thickening and the extension of ischemic areas, and it improved the capillary coverage. These results indicate that low doses of oral glibenclamide could still be beneficial for the prevention of type 2 diabetic retinopathy. Whether the retinas ofpatients treated specifically with glibenclamideare less at risk of developing diabetic complications remains to be demonstrated.
Keyphrases