A 3D Printed Composite Scaffold Loaded with Clodronate to Regenerate Osteoporotic Bone: In Vitro Characterization.
Stefania CometaMaria Addolorata BonifacioElisabetta TranquilloAntonio GloriaMarco DomingosElvira De GiglioPublished in: Polymers (2021)
Additive manufacturing (AM) is changing our current approach to the clinical treatment of bone diseases, providing new opportunities to fabricate customized, complex 3D structures with bioactive materials. Among several AM techniques, the BioCell Printing is an advanced, integrated system for material manufacture, sterilization, direct cell seeding and growth, which allows for the production of high-resolution micro-architectures. This work proposes the use of the BioCell Printing to fabricate polymer-based scaffolds reinforced with ceramics and loaded with bisphosphonates for the treatment of osteoporotic bone fractures. In particular, biodegradable poly(ε-caprolactone) was blended with hydroxyapatite particles and clodronate, a bisphosphonate with known efficacy against several bone diseases. The scaffolds' morphology was investigated by means of Scanning Electron Microscopy (SEM) and micro-Computed Tomography (micro-CT) while Energy Dispersive X-ray Spectroscopy (EDX) and X-ray Photoelectron Spectroscopy (XPS) revealed the scaffolds' elemental composition. A thermal characterization of the composites was accomplished by Thermogravimetric analyses (TGA). The mechanical performance of printed scaffolds was investigated under static compression and compared against that of native human bone. The designed 3D scaffolds promoted the attachment and proliferation of human MSCs. In addition, the presence of clodronate supported cell differentiation, as demonstrated by the normalized alkaline phosphatase activity. The obtained results show that the BioCell Printing can easily be employed to generate 3D constructs with pre-defined internal/external shapes capable of acting as a temporary physical template for regeneration of cancellous bone tissues.
Keyphrases
- tissue engineering
- high resolution
- bone mineral density
- computed tomography
- electron microscopy
- bone regeneration
- bone loss
- soft tissue
- postmenopausal women
- dual energy
- drug delivery
- body composition
- endothelial cells
- mesenchymal stem cells
- stem cells
- gene expression
- magnetic resonance imaging
- physical activity
- single molecule
- signaling pathway
- mental health
- cell therapy
- magnetic resonance
- mass spectrometry
- positron emission tomography
- atomic force microscopy
- image quality
- contrast enhanced
- high speed
- solid phase extraction
- replacement therapy
- aqueous solution
- solid state