Login / Signup

Combining Ability and Performance of Extra-Early Maturing Provitamin A Maize Inbreds and Derived Hybrids in Multiple Environments.

Olatise OluwaseunBaffour Badu-AprakuMoses AdebayoAdamu Masari Abubakar
Published in: Plants (Basel, Switzerland) (2022)
Availability of maize ( Zea mays L.) hybrids with elevated provitamin A (PVA) levels and tolerance to contrasting stresses would improve food self-sufficiency and combat malnutrition in sub-Saharan Africa (SSA). This study was conducted to (i) analyze selected PVA inbreds of extra-early maturity for carotenoid content, (ii) estimate the combining abilities of the inbred lines for grain yield and other agronomic traits, (iii) assign inbred lines to distinct heterotic groups (HGs), (iv) identify testers among the inbred lines, and (v) determine grain yield and stability of the PVA hybrids across contrasting environments. Thirty-three extra-early maturing inbred lines selected for high carotenoid content were crossed with four inbred testers to obtain 132 testcrosses. The testcrosses, six tester × tester crosses and two hybrid checks, were evaluated across three Striga -infested, four drought and five optimal growing environments in Nigeria, 2014-2016. Results of the chemical analysis revealed that inbred lines TZEEIOR 109, TZEEIOR 30, TZEEIOR 41, TZEEIOR 97, TZEEIOR 42, and TZEEIOR 140 had intermediate PVA levels. Both additive and nonadditive gene actions were important in the inheritance of grain yield and other measured traits under stress and optimal environments. However, additive gene action was preponderant over the nonadditive gene action. The inbred lines were classified into three HGs across environments. Inbreds TZEEIOR 249 and TZEEIOR 30 were identified as testers for HGs I and II, respectively. The hybrid TZEEI 79 × TZEEIOR 30 was the most outstanding in terms of grain yield and was stable across environments. This hybrid should be tested extensively in on-farm trials for consistency in performance and commercialized to combat malnutrition and food insecurity in SSA.
Keyphrases
  • genome wide
  • copy number
  • dna methylation
  • genome wide identification
  • mitochondrial dna
  • gene expression
  • single cell
  • transcription factor