Development and Validation of a Simple High-Pressure Liquid Chromatography-Ultraviolet Detection Method for Simultaneous Quantitation of First-Line Anti-Tuberculosis Drugs in Formulations of Fixed-Dose Combination.
Sudha VilvamaniSanthanamahalingam MahalingamSruthi NhavilthodiDharman MurugesanShanmugam Murugaiha JeyakumarPublished in: Journal of chromatographic science (2024)
The current treatment protocol for drug-sensitive tuberculosis involves all four first-line anti-tuberculosis drugs: rifampicin, isoniazid, pyrazinamide and ethambutol hydrochloride in a single tablet, known as fixed-dose combination tablets. However, the analytical methods are scanty to test all these drugs simultaneously in a single run without any pre-sample process or using a simple method suitable for resource-limited settings. In this method, 50 mM potassium phosphate buffer containing 0.2% triethylamine (without pH adjustment) added with acetonitrile (98:2, v/v) was served as mobile phase A, while mobile phase B was 100% acetonitrile. All four drugs were separated within 10.3 min using a gradient mobile phase program in a C18 column (150 mm × 4.6 mm; 5 μm) and detected at two ultraviolet wavelengths (238 nm for rifampicin, isoniazid and pyrazinamide, and 210 nm for ethambutol hydrochloride). The method was selective, sensitive and linear with a correlation coefficient >0.999 with the acceptable precision and accuracy (<2% relative standard deviation) for all four drugs. In conclusion, the method is simple and it does not require any pH adjustment of the buffer/mobile phase, and within 11 min, the separation of all four drugs can be achieved. Overall, the method is suitable for quality testing of fixed-dose combination tablets in limited-resource settings.
Keyphrases
- mycobacterium tuberculosis
- liquid chromatography
- pulmonary tuberculosis
- mass spectrometry
- high resolution mass spectrometry
- ms ms
- drug induced
- photodynamic therapy
- emergency department
- hiv aids
- high resolution
- solid phase extraction
- high performance liquid chromatography
- hiv infected
- combination therapy
- electronic health record
- contrast enhanced