Login / Signup

Ultra-long coherence times amongst room-temperature solid-state spins.

E D HerbschlebHiromitsu KatoY MaruyamaT DanjoT MakinoS YamasakiI OhkiK HayashiH MorishitaM FujiwaraN Mizuochi
Published in: Nature communications (2019)
Solid-state single spins are promising resources for quantum sensing, quantum-information processing and quantum networks, because they are compatible with scalable quantum-device engineering. However, the extension of their coherence times proves challenging. Although enrichment of the spin-zero 12C and 28Si isotopes drastically reduces spin-bath decoherence in diamond and silicon, the solid-state environment provides deleterious interactions between the electron spin and the remaining spins of its surrounding. Here we demonstrate, contrary to widespread belief, that an impurity-doped (phosphorus) n-type single-crystal diamond realises remarkably long spin-coherence times. Single electron spins show the longest inhomogeneous spin-dephasing time ([Formula: see text] ms) and Hahn-echo spin-coherence time (T2 ≈ 2.4 ms) ever observed in room-temperature solid-state systems, leading to the best sensitivities. The extension of coherence times in diamond semiconductor may allow for new applications in quantum technology.
Keyphrases