Mesoporous silica nanocarriers encapsulated antimalarials with high therapeutic performance.
Saliu Alao AmolegbeYui HiranoJoseph Oluwatope AdebayoOlusegun George AdemowoElizabeth Abidemi BalogunJoshua Ayoola ObaleyeAntoniana Ursine KrettliChengzhong YuShinya HayamiPublished in: Scientific reports (2018)
The use of nanocarriers in drug delivery is a breakeven research and has received a clarion call in biomedicine globally. Herein, two newly nano-biomaterials: MCM-41 encapsulated quinine (MCM-41 ⊃ QN) (1) and 3-phenylpropyl silane functionalized MCM-41 loaded QN (pMCM-41 ⊃ QN) (2) were synthesized and well characterized. 1 and 2 along with our two already reported nano-antimalarial drugs (MCM-41 ⊃ ATS) (3) and 3-aminopropyl silane functionalized MCM-41 contained ATS (aMCM-41 ⊃ ATS) (4) were screened in vitro for their activity against P. falciparium W2 strain, cytotoxicity against BGM cells and in vivo for their activity against Plasmodium bergheiNK65. 1 has the highest antimalarial activity in vivo against P. berghei NK65, (ED50: < 0.0625 mg/kg body weight) and higher mean survival time compared to the other nano biomaterials or unencapsulated drugs at doses higher than 0.0625 mg/kg body weight. This encapsulation strategy of MCM-41 ⊃ QN (1) stands very useful and effective in delivering the drug to the target cells compared to other delivery systems and therefore, this encapsulated drug may be considered for rational drug design.