Silver Metal-Organic Framework Derived N-Doped Carbon Nanofibers for CO 2 Conversion into β-Oxopropylcarbamates.
Yu-Ting ZhaiCang-Hua ZhangWen-Min WangTian-Ding HuZhi-Lei WuPublished in: Inorganic chemistry (2024)
Developing efficient heterogeneous catalysts for chemical fixation of CO 2 to produce high-value-added chemicals under mild conditions is highly desired but still challenging. Herein, we first reported an approach to prepare a novel catalyst (Ag@NCNFs), featuring Ag nanoparticles (NPs) embedded within porous nitrogen-doped carbon nanofibers (NCNFs), via growing a Ag metal-organic framework on one-dimensional electrospun nanofibers followed by pyrolysis. Benefiting from the abundant nitrogen species and porous structure, Ag NPs is well dispersed in the obtained Ag@NCNFs. Catalytic studies indicated that Ag@NCNFs exhibited excellent catalytic activity for the three-component coupling reaction of CO 2 , secondary amines, and propargylic alcohols to generate β-oxopropylcarbamates under mild conditions with a turnover number (TON) of 16.2, and it can be recycled and reused at least 5 times without an obvious decline in catalytic activity. The reaction mechanism was clearly clarified by FTIR, NMR, 13 C isotope labeling, control experiments, and density functional theory calculations. The results suggest that Ag@NCNFs and 1,8-diazabicyclo[5.4.0]undec-7-ene can synergistically activate propargylic alcohol to react with CO 2 , and then the generated α-alkylidene cyclic carbonate was invaded by secondary amine to produce β-oxopropylcarbamate. Importantly, to the best of our knowledge, this is the first experimental and theoretical investigation on this reaction.
Keyphrases