Aberrant Phase Precession of Lateral Septal Cells in a Maternal Immune Activation Model of Schizophrenia Risk May Disrupt the Integration of Location with Reward.
Lucinda J SpeersRobert SchmidtDavid K BilkeyPublished in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2022)
Spatial memory and reward processing are known to be disrupted in schizophrenia. Since the lateral septum (LS) may play an important role in the integration of location and reward, we examined the effect of maternal immune activation (MIA), a known schizophrenia risk factor, on spatial representation in the rat LS. In support of a previous study, we found that spatial location is represented as a phase code in the rostral LS of adult male rats, so that LS cell spiking shifts systematically against the phase of the hippocampal, theta-frequency, local field potential as an animal moves along a track toward a reward (phase precession). Whereas shallow precession slopes were observed in control group cells, they were steeper in the MIA animals, such that firing frequently precessed across several theta cycles as the animal moved along the length of the apparatus, with subsequent ambiguity in the phase representation of location. Furthermore, an analysis of the phase trajectories of the control group cells revealed that the population tended to converge toward a common firing phase as the animal approached the reward location. This suggested that phase coding in these cells might signal both reward location and the distance to reward. By comparison, the degree of phase convergence in the MIA-group cells was weak, and the region of peak convergence was distal to the reward location. These findings suggest that a schizophrenia risk factor disrupts the phase-based encoding of location-reward relationships in the LS, potentially smearing reward representations across space. SIGNIFICANCE STATEMENT It is unclear how spatial or contextual information generated by hippocampal cells is converted to a code that can be used to signal reward location in regions, such as the VTA. Here we provide evidence that the firing phase of cells in the lateral septum, a region that links the two areas, may code reward location in the firing phase of cells. This phase coding is disrupted in a maternal immune activation model of schizophrenia risk such that representations of reward may be smeared across space in maternal immune activation animals. This could potentially underlie erroneous reward processing and misattribution of salience in schizophrenia.
Keyphrases
- induced apoptosis
- cell cycle arrest
- bipolar disorder
- prefrontal cortex
- endoplasmic reticulum stress
- risk factors
- working memory
- oxidative stress
- stem cells
- minimally invasive
- cell death
- heart failure
- signaling pathway
- healthcare
- bone marrow
- transcranial magnetic stimulation
- depressive symptoms
- brain injury
- neural network