Login / Signup

Label-Free Optical Imaging of the Dynamic Stick-Slip and Migration of Single Sub-100-nm Surface Nanobubbles: A Superlocalization Approach.

Yongjie WangJing ChenYingyan JiangXian WangWei Wang
Published in: Analytical chemistry (2019)
The past decade has witnessed theoretical and experimental debates on the extraordinary long lifetime and low contact angle of surface nanobubbles. While several kinds of imaging techniques have provided promising evidence on the lifetime and gaseous nature of single surface nanobubble, each of them suffered from its own limitations before a consensus can be reached. In the present work, we employ a recently developed surface plasmon resonance microscopy (SPRM) to nonintrusively visualize single sub-100-nm surface nanobubble without labeling for the first time. The quantitative dependence between optical signal and nanobubble volume allows for resolving the dissolution kinetics, which is a key for understanding the lifetime. A superlocalization method is further introduced to monitor the trajectory of its mass center during dissolution, which uncovers the stick-slip behavior in the early stage and the migration behavior in the late stage. The label-free, nonintrusive, quantitative and sensitive features of SPRM and the potential compatibility with atomic force microscopy shed new light on the long-standing puzzle behind surface nanobubbles.
Keyphrases