Molecular beacons (MBs) represent a class of nucleic acid probes with unique DNA hairpin structures that specifically target complementary DNA or RNA. The inherent "OFF" to "ON" signal transduction mechanism of MBs makes them promising molecular probes for real-time imaging of DNA/RNA in living cells. However, conventional MBs have been challenged with such issues as false-positive signals and poor biostability in complex cellular matrices. This paper describes the novel engineering steps used to improve the fluorescence signal and reduce to background fluorescence, as well as the incorporation of unnatural nucleotide bases to increase the resistance of MBs to nuclease degradation for application in such fields as chemical analysis, biotechnology, and clinical medicine. The applications of these de novo MBs for single-cell imaging will be also discussed.