Login / Signup

The Efficacy of Biological Control for the Suppression of the Pea Aphid (Acyrthosiphon Pisum): Does the Resistance of Alfalfa Cultivars Matter?

Xiang ZhangQiong WuJianing MuZunqi ChaoQi HeTing GaoChuan WangMark Richard McNeillZhao-Zhi Lu
Published in: Insects (2022)
The pea aphid, Acyrthosiphon pisum Harris, is a major pest of alfalfa in northwestern China. However, the roles of different groups of natural enemies in combination with aphid-resistant cultivars in the suppression of the pea aphid have not been clarified under field conditions. In this study, we used experimental cages to better understand the top-down (natural enemies) and bottom-up (nine alfalfa cultivars) biological processes, as well as the individual roles of the two processes, in the control of the pea aphid. There was a significant difference in resistance among cultivar classes revealed when natural enemies were excluded. The functional contribution of top-down suppression was higher than the bottom-up process, with natural enemies significantly suppressing aphid populations, regardless of the resistance level of different alfalfa cultivars. The mean biological efficacies of predators, parasitoids, and mixed populations of natural enemies were 85%, 42%, and 88%, respectively. Overall, our study indicated that natural enemies play a critical role in suppressing aphid populations, especially in the summer, whereas cultivar resistance did not combine effectively with natural enemies to inhibit the growth of aphids. Conservation biological control (CBC) can be implemented in the alfalfa production regions in northwestern China to reduce the overreliance on insecticides for the control of pests and mitigate their harmful effects on humans, ecosystems, and biodiversity.
Keyphrases
  • signaling pathway