Login / Signup

High-harmonic generation in Weyl semimetal β-WP2 crystals.

Yang-Yang LvJinlong XuShuang HanChi ZhangYadong HanJian ZhouShu-Hua YaoXiao-Ping LiuMing-Hui LuHong-Ming WengZhenda XieY B ChenJianbo HuYan-Feng ChenShining Zhu
Published in: Nature communications (2021)
As a quantum material, Weyl semimetal has a series of electronic-band-structure features, including Weyl points with left and right chirality and corresponding Berry curvature, which have been observed in experiments. These band-structure features also lead to some unique nonlinear properties, especially high-order harmonic generation (HHG) due to the dynamic process of electrons under strong laser excitation, which has remained unexplored previously. Herein, we obtain effective HHG in type-II Weyl semimetal β-WP2 crystals, where both odd and even orders are observed, with spectra extending into the vacuum ultraviolet region (190 nm, 10th order), even under fairly low femtosecond laser intensity. In-depth studies have interpreted that odd-order harmonics come from the Bloch electron oscillation, while even orders are attributed to Bloch oscillations under the "spike-like" Berry curvature at Weyl points. With crystallographic orientation-dependent HHG spectra, we further quantitatively retrieved the electronic band structure and Berry curvature of β-WP2. These findings may open the door for exploiting metallic/semimetallic states as solid platforms for deep ultraviolet radiation and offer an all-optical and pragmatic solution to characterize the complicated multiband electronic structure and Berry curvature of quantum topological materials.
Keyphrases