Hydrochromic Smart Windows to Remove Harmful Substances by Mimicking Medieval European Stained Glasses.
Seung Beom PyunJi Eun SongJung Yeon KimEun Chul ChoPublished in: ACS applied materials & interfaces (2020)
Medieval European stained glass windows are known to display various splendid colors and remove harmful airborne substances. At present, the functions of medieval stained glass windows are imperative, from the environment, health, and energy perspectives, to develop multi-functional windows that report/control environmental conditions and remove harmful substances by utilizing visible-near-infrared light sources. Here, we suggest a strategy to mimic medieval European stained glasses for devising plasmonic-based multi-functional smart stained glass windows. The stained glass windows are prepared from the deposition of gold nanoparticles on a glass that is preliminarily coated with a responsive colloidal nanosheet. The temperature responsiveness of the nanosheet enables the effective control the gold nanoparticle density of the stained glasses. Therefore, the windows can display blue, violet, and cranberry colors. The colors become iridescent by introducing a photonic crystal monolayer. The stained glass windows are hydrochromic: they switch the colors (blue ↔ cranberry) and modulate light transmittance depending on humidity conditions. Moreover, they can remove formaldehyde under the illumination of a low-power indoor light. These functions provide a new platform for the futuristic smart windows that clean indoor air for the human health and save energy.