Login / Signup

Metal-Organic Framework Magnets.

Agnes E ThorarinsdottirT David Harris
Published in: Chemical reviews (2020)
Metal-organic frameworks represent the ultimate chemical platform on which to develop a new generation of designer magnets. In contrast to the inorganic solids that have dominated permanent magnet technology for decades, metal-organic frameworks offer numerous advantages, most notably the nearly infinite chemical space through which to synthesize predesigned and tunable structures with controllable properties. Moreover, the presence of a rigid, crystalline structure based on organic linkers enables the potential for permanent porosity and postsynthetic chemical modification of the inorganic and organic components. Despite these attributes, the realization of metal-organic magnets with high ordering temperatures represents a formidable challenge, owing largely to the typically weak magnetic exchange coupling mediated through organic linkers. Nevertheless, recent years have seen a number of exciting advances involving frameworks based on a wide range of metal ions and organic linkers. This review provides a survey of structurally characterized metal-organic frameworks that have been shown to exhibit magnetic order. Section 1 outlines the need for new magnets and the potential role of metal-organic frameworks toward that end, and it briefly introduces the classes of magnets and the experimental methods used to characterize them. Section 2 describes early milestones and key advances in metal-organic magnet research that laid the foundation for structurally characterized metal-organic framework magnets. Sections 3 and 4 then outline the literature of metal-organic framework magnets based on diamagnetic and radical organic linkers, respectively. Finally, Section 5 concludes with some potential strategies for increasing the ordering temperatures of metal-organic framework magnets while maintaining structural integrity and additional function.
Keyphrases
  • metal organic framework
  • water soluble
  • magnetic resonance
  • systematic review
  • risk assessment
  • human health
  • climate change
  • mass spectrometry
  • liquid chromatography
  • aqueous solution
  • simultaneous determination