Login / Signup

Cosolutes Modify Alkaline Phosphatase Catalysis through Osmotic Stress and Crowding Mechanisms.

Oksana A YavorskaLukas SyristeChantal M du PlessisMaryam YaqoobKyle LoogmanMichael CordaraHoyoung Lee
Published in: ACS omega (2021)
Examining the effects of different cosolutes on in vitro enzyme kinetics yielded glimpses into their potential behavior when functioning in their natural, complex, in vivo milieu. Viewing cosolute in vitro influences on a model enzyme, calf intestinal alkaline phosphatase, as a combination of competitive and uncompetitive behaviors provided quantitative insights into their effects on catalysis. Observed decreases in the apparent specificity constant, K asp, caused by the presence of polyethylene glycols or betaine in the reaction solution, indicated interference with enzyme-substrate complex formation. This competitive inhibition appeared to be driven by osmotic stress. Dextran 6 K and sucrose strongly impeded the subsequent conversion of the bound substrate into a free product, which was marked by sharp reductions in V max, uncompetitive inhibition. For the same step, smaller noncarbohydrate cosolutes, triethylene glycol, polyethylene glycol 400, and betaine, also behaved as uncompetitive inhibitors but to a lesser extent. However, polyethylene glycol 8000 and 20,000 were uncompetitive activators, increasing V max. Polyethylene glycol of molecular weight 1000 displayed intermediate effects between these two groups of noncarbohydrate cosolutes. These results suggested that crowding has a strong influence on free product formation. The combination of competitive and uncompetitive effects and mixed behaviors, caused by the cosolutes on calf intestinal alkaline phosphatase kinetics, was consistent with the trends seen in similar enzyme-cosolute studies. It is proposed that the double-displacement mechanism of alkaline phosphatases, shared by many other enzymes, could be the root of this general observation.
Keyphrases
  • computed tomography
  • structural basis
  • contrast enhanced