Chemoproteomics Reveals Glaucocalyxin A Induces Mitochondria-Dependent Apoptosis of Leukemia Cells via Covalently Binding to VDAC1.
Yehai AnQian ZhangYu ChenFei XiaYin-Kwan WongHengkai HeMingjing HaoJiahang TianXiaoyong ZhangPiao LuoJi-Gang WangPublished in: Advanced biology (2023)
Chronic myelogenous leukemia (CML) that is resistant to tyrosine kinase inhibitors is one of the deadliest hematologic malignancies, and the T315I mutation in the breakpoint cluster region-Abelson (BCR-ABL) kinase domain is the most prominent point mutation responsible for imatinib resistance in CML. Glaucocalyxin A (GLA), a natural bioactive product derived from the Rabdosia rubescens plant, has strong anticancer activity. In this study, the effect and molecular mechanism of GLA on imatinib-sensitive and imatinib-resistant CML cells harboring T315I mutation via a combined deconvolution strategy of chemoproteomics and label-free proteomics is investigated. The data demonstrated that GLA restrains proliferation and induces mitochondria-dependent apoptosis in both imatinib-sensitive and resistant CML cells. GLA covalently binds to the cysteine residues of mitochondrial voltage-dependent anion channels (VDACs), resulting in mitochondrial damage and overflow of intracellular apoptotic factors, eventually leading to apoptosis. In addition, the combination of GLA with elastin, a mitochondrial channel VDAC2/3 inhibitor, enhances mitochondria-dependent apoptosis in imatinib-sensitive and -resistant CML cells, representing a promising therapeutic approach for leukemia treatment. Taken together, the results show that GLA induces mitochondria-dependent apoptosis via covalently targeting VDACs in CML cells. GLA may thus be a candidate compound for the treatment of leukemia.
Keyphrases
- protein kinase
- cell cycle arrest
- chronic myeloid leukemia
- cell death
- induced apoptosis
- oxidative stress
- endoplasmic reticulum stress
- pi k akt
- acute myeloid leukemia
- signaling pathway
- bone marrow
- acute lymphoblastic leukemia
- machine learning
- tyrosine kinase
- cell proliferation
- fluorescent probe
- living cells
- single molecule