Feasibility of CT radiomics to predict treatment response of individual liver metastases in esophagogastric cancer patients.
Remy KlaassenRuben T H M LarueBanafsche MearadjiStephanie O van der WoudeJaap StokerPhilippe LambinHanneke W M van LaarhovenPublished in: PloS one (2018)
In this study we investigate a CT radiomics approach to predict response to chemotherapy of individual liver metastases in patients with esophagogastric cancer (EGC). In eighteen patients with metastatic EGC treated with chemotherapy, all liver metastases were manually delineated in 3D on the pre-treatment and evaluation CT. From the pre-treatment CT scans 370 radiomics features were extracted per lesion. Random forest (RF) models were generated to discriminate partial responding (PR, >65% volume decrease, including 100% volume decrease), and complete remission (CR, only 100% volume decrease) lesions from other lesions. RF-models were build using a leave one out strategy where all lesions of a single patient were removed from the dataset and used as validation set for a model trained on the lesions of the remaining patients. This process was repeated for all patients, resulting in 18 trained models and one validation set for both the PR and CR datasets. Model performance was evaluated by receiver operating characteristics with corresponding area under the curve (AUC). In total 196 liver metastases were delineated on the pre-treatment CT, of which 99 (51%) lesions showed a decrease in size of more than 65% (PR). From the PR set a total of 47 (47% of RL, 24% of initial) lesions were no longer detected in CT scan 2 (CR). The RF-model for PR lesions showed an average training AUC of 0.79 (range: 0.74-0.83) and 0.65 (95% ci: 0.57-0.73) for the combined validation set. The RF-model for CR lesions had an average training AUC of 0.87 (range: 0.83-0.90) and 0.79 (95% ci 0.72-0.87) for the validation set. Our findings show that individual response of liver metastases varies greatly within and between patients. A CT radiomics approach shows potential in discriminating responding from non-responding liver metastases based on the pre-treatment CT scan, although further validation in an independent patient cohort is needed to validate these findings.
Keyphrases
- liver metastases
- contrast enhanced
- computed tomography
- dual energy
- image quality
- end stage renal disease
- newly diagnosed
- magnetic resonance imaging
- chronic kidney disease
- ejection fraction
- magnetic resonance
- prognostic factors
- combination therapy
- rheumatoid arthritis
- systemic lupus erythematosus
- resistance training
- body composition
- squamous cell carcinoma
- disease activity
- climate change
- young adults