The Short Isoform of DNAJB6 Protects against 1-Methyl-4-phenylpridinium Ion-Induced Apoptosis in LN18 Cells via Inhibiting Both ROS Formation and Mitochondrial Membrane Potential Loss.
Yeon-Mi HongYohan HongYeong-Gon ChoiSujung YeoSoo Hee JinSeo-Yeon LeeBackil SungSook-Hyun LeeHyejin JungSabina LimPublished in: Oxidative medicine and cellular longevity (2017)
In a previous study, we found that the short isoform of DNAJB6 (DNAJB6(S)) had been decreased in the striatum of a mouse model of Parkinson's disease (PD) induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). DNAJB6, one of the heat shock proteins, has been implicated in the pathogenesis of PD. In this study, we explored the cytoprotective effect of DNAJB6(S) against 1-methyl-4-phenylpyridinium ion- (MPP+-) induced apoptosis and the underlying molecular mechanisms in cultured LN18 cells from astrocytic tumors. We observed that MPP+ significantly reduced the cell viability and induced apoptosis in LN18 glioblastoma cells. DNAJB6(S) protected LN18 cells against MPP+-induced apoptosis not only by suppressing Bax cleavage but also by inhibiting a series of apoptotic events including loss of mitochondrial membrane potential, increase in intracellular reactive oxygen species, and activation of caspase-9. These observations suggest that the cytoprotective effects of DNAJB6(S) may be mediated, at least in part, by the mitochondrial pathway of apoptosis.