Login / Signup

Oxygen-Deficient Bimetallic Oxide FeWOX Nanosheets as Peroxidase-Like Nanozyme for Sensing Cancer via Photoacoustic Imaging.

Fei GongNailin YangYong WangMingpeng ZhuoQi ZhaoSheng WangYonggang LiZhuang LiuQian ChenLiang Cheng
Published in: Small (Weinheim an der Bergstrasse, Germany) (2020)
Nanozymes with high catalytic activity and great stability have attracted increasing interests as the promising alternative to natural enzymes for applications in various fields. In this study, a new type of highly efficient peroxidase-like nanozymes based on FeWOX nanosheets (NSs) synthesized by a thermal-decomposition method is reported. Owing to the sheet-structure with maximized utilization of catalytic sites (Fe atoms and oxygen vacancies), such FeWOX NSs exert efficient enzyme activity to trigger catalytic decomposition of hydrogen peroxide (H2 O2 ) into hydroxyl radicals (•OH). A nanozyme-based ratio-metric nanoprobe is then fabricated by co-loading of 3,3,5,5-tetramethylbenzidine (TMB) and IR780 dye on FeWOX NSs to enable ratio-metric photoacoustic (PA) imaging of endogenous H2 O2 , as verified by imaging of the subcutaneous 4T1 xenograft tumor model and lipopolysaccharide (LPS)-induced inflammation model. Moreover, FeWOX NSs could also be employed as promising nanoagents for multimodal computed tomography (CT) and magnetic resonance (MR) imaging of tumors, due to the strong X-ray attenuation ability of W element and high MR contrast ability of Fe element, respectively. Importantly, FeWOX NSs with good biodegradability could be cleared out from the body without any significant biotoxicity. This work highlights bimetallic oxide FeWOX NSs as an enzyme-mimetic nanoplatform for imaging of the tumor microenvironment.
Keyphrases