Login / Signup

PFMNet: Prototype-based feature mapping network for few-shot domain adaptation in medical image segmentation.

Runze WangGuoyan Zheng
Published in: Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society (2024)
Lack of data is one of the biggest hurdles for rare disease research using deep learning. Due to the lack of rare-disease images and annotations, training a robust network for automatic rare-disease image segmentation is very challenging. To address this challenge, few-shot domain adaptation (FSDA) has emerged as a practical research direction, aiming to leverage a limited number of annotated images from a target domain to facilitate adaptation of models trained on other large datasets in a source domain. In this paper, we present a novel prototype-based feature mapping network (PFMNet) designed for FSDA in medical image segmentation. PFMNet adopts an encoder-decoder structure for segmentation, with the prototype-based feature mapping (PFM) module positioned at the bottom of the encoder-decoder structure. The PFM module transforms high-level features from the target domain into the source domain-like features that are more easily comprehensible by the decoder. By leveraging these source domain-like features, the decoder can effectively perform few-shot segmentation in the target domain and generate accurate segmentation masks. We evaluate the performance of PFMNet through experiments on three typical yet challenging few-shot medical image segmentation tasks: cross-center optic disc/cup segmentation, cross-center polyp segmentation, and cross-modality cardiac structure segmentation. We consider four different settings: 5-shot, 10-shot, 15-shot, and 20-shot. The experimental results substantiate the efficacy of our proposed approach for few-shot domain adaptation in medical image segmentation.
Keyphrases
  • deep learning
  • convolutional neural network
  • artificial intelligence
  • machine learning
  • healthcare
  • high resolution
  • heart failure
  • high density
  • mass spectrometry
  • optic nerve
  • data analysis