Impact of Phytoplankton Blooms on Concentrations of Antibiotics in Sediment and Snails in a Subtropical River, China.
Jinpeng TangJi FangNora Fungyee TamYang YangYunv DaiJinhua ZhangYuming ShiPublished in: Environmental science & technology (2021)
The present three-year field investigation on sediment in the eutrophic Pearl River in South China showed that concentrations of sulfonamides (SAs), fluoroquinolones (FQs), and macrolides (MLs) in the river areas where blooms occurred were 4.6, 2.4, and 3.4 times higher than those without blooms, respectively, but the respective concentrations of tetracycline (TC) and oxytetracycline (OTC) in the areas with blooms were 2.6 and 3.8 times lower than those without. Significant positive correlations were found between concentrations of chlorophyll a in water and most antibiotics in sediment. Further investigation in each season suggested that lower diffusion but higher sinking were possible reasons driving the burial of sulfapyridine (SPD), sulfamethoxazole (SMX), and trimethoprim (TMP) in sediment from areas where blooms occurred, with burial rates up to 14.86, 48.58, and 52.19 g month-1, respectively. Concentrations of TCs in both water and sediment were inversely correlated with phytoplankton biomass, which might be related to the enhanced biodegradation capacity of bacteria caused by phytoplankton blooms. Phytoplankton also affected concentrations of antibiotics in the snail, Bellamya purificata, with higher values in March but lower values in September. The concentration of antibiotics in snails positively correlated with that in sediment when snails were dormant but with antibiotics in water after dormancy.