Login / Signup

Application of temperature-controlled chiral hybrid structures constructed from copper(ii)-monosubstituted Keggin polyoxoanions and copper(ii)-organoamine complexes in enantioselective sensing of tartaric acid.

Mu-Xiu YangMeng-Jie ZhouJia-Peng CaoYe-Min HanYa-Lin HongYan Xu
Published in: RSC advances (2020)
Temperature usually occupies a crucial position in the construction of chiral compounds. By controlling the temperature of the reaction system, chiral and non-chiral compounds can be designed and synthesized. Given the above, three new chiral and non-chiral compounds based on copper(ii) monosubstituted polyoxoanions and Cu(en) complexes (en = ethylenediamine), d/l-[Cu(H 2 O)(en) 2 ] 2 {[Cu(H 2 O) 2 (en)][SiCuW 11 O 39 ]}·5H 2 O (1, d-1 and l-1) and [Cu(H 2 O)(en) 2 ]{[Cu(en) 2 ] 2 [SiCuW 11 O 39 ]}·2.5H 2 O (2), were successfully synthesized under hydrothermal conditions. The main synthesis conditions of compound 1 (d-1 and l-1) and compound 2 are the same, however, the only difference is that the reaction temperatures are 80 °C and 140 °C, respectively. What's more, compounds 1 and 2 can form a 1D chiral chain by Cu-O and W/Cu-O-W/Cu bonds, respectively, and further obtain a 3D-supramolecular framework through hydrogen bonding interaction. Meanwhile, due to the asymmetry of chiral compound 1, optical second-harmonic generation (SHG) was used to investigate the second-order nonlinear optical effect and it was found that the observed SHG efficiency of compound 1 is 0.3 times that of urea. To further investigate the chiral properties, d-1 and l-1 were used in the electrochemical enantioselective sensing of d-/l-tartaric acid (d-/l-tart) molecules, respectively, which demonstrates that d-1 and l-1 have a good application prospect in sensing chiral substances.
Keyphrases