Login / Signup

Growth Quality and Development of Olive Plants Cultured In-Vitro under Different Illumination Regimes.

Pablo Díaz-RuedaManuel Cantos-BarragánJosé Manuel Colmenero-Flores
Published in: Plants (Basel, Switzerland) (2021)
Light-emitting diodes (LEDs) are useful for the in-vitro micropropagation of plants, but little information is available on woody species. This work compares the effects of light quality and intensity on the growth and development of micropropagated olive plants from two different subspecies. Illumination was provided with fluorescent and LED lamps covering different red/blue ratios (90/10, 80/20, 70/30, 60/40) or red/blue/white combinations, as well as different light intensities (30, 34, 40, 52, 56, 84, 98 and 137 µmol m-2 s-1 of photosynthetic photon fluxes, PPF). Olive plants exhibited high sensitivity to light quality and intensity. Higher red/blue ratios or lower light intensities stimulated plant growth and biomass mainly as a consequence of a higher internodal elongation rate, not affecting either the total number of nodes or shoots. In comparison to fluorescent illumination, LED lighting improved leaf area and biomass, which additionally was positively correlated with light intensity. Stomatal frequency was positively, and pigments content negatively, correlated with light intensity, while no clear correlation was observed with light quality. In comparison with fluorescent lamps, LED illumination (particularly the 70/30 red/blue ratio with 34 µmol m-2 s-1 PPF intensity) allowed optimal manipulation and improved the quality of in-vitro micropropagated olive plants.
Keyphrases
  • high intensity
  • light emitting
  • living cells
  • healthcare
  • squamous cell carcinoma
  • lymph node
  • endothelial cells
  • wastewater treatment
  • social media
  • neoadjuvant chemotherapy