Login / Signup

Structural Studies of Hydrographenes.

Elena VishnyakovaGaowei ChenBruce E BrinsonLawrence B AlemanyW Edward Billups
Published in: Accounts of chemical research (2017)
As a result of the unique physical and electrical properties, graphene continues to attract the interest of a large segment of the scientific community. Since graphene does not occur naturally, the ability to exfoliate and isolate individual layers of graphene from graphite is an important and challenging process. The interlayer cohesive energy of graphite that results from van der Waals attractions has been determined experimentally to be 61 meV per carbon atom (61 meV/C atom). This requires the development of a method to overcome the strong attractive forces associated with graphite. The exfoliation process that we, and others, have investigated involves electron transfer into bulk graphite from intercalated lithium to yield lithium graphenide. The resulting graphenide can be reacted with various reagents to yield functionalized graphene. As a part of our interest in the functionalization of graphene, we have explored the Birch reduction as a route to hydrographenes. The addition of hydrogen transforms graphene into an insulator, leading to the prediction that important applications will emerge. This Account focuses mainly on the characterization of the hydrographenes that are obtained from different types of graphite including synthetic graphite powder, natural flake graphite, and annealed graphite powder. Analysis by solid state 13C NMR spectroscopy proved to be important since it was shown that the hydrographenes are composed of interior, isolated aromatic (predominantly fully substituted benzene) rings surrounded by saturated rings. The expected clusters of benzene rings were not found. NMR spectroscopy also offers strong evidence for the presence of tert-butyl alcohol and ethanol (workup solvent) that could not be removed in vacuo from the samples. These compounds could be observed to move freely within the layers of the hydrographene. High-resolution transmission electron microscopy images revealed a remarkable change in morphology that results when hydrogen is added to the graphenide. The appearance of edge and circular dislocations and increased distances between graphitic layers are most visible in the case of the hydrographenes that are formed from annealed graphite. The repetitive hydrogenation of synthetic graphite powder leads to an increase in the distances between the graphitic layers in the (002) direction from 3.4 Å for the initial graphite to 4.11 Å after the first reduction and to 4.29 Å after a third reduction of the same material. Defect-free graphite is formed when the hydrographenes are heated. The distance between carbon layers decreases from 4.11 to 3.44 Å after heating the samples to 1200 °C. This trend toward the spacing of graphite confirms the reversibility of the functionalization process. The C-H bonds have been broken yielding hydrogen, and the exposed carbon orbitals are in close enough proximity to have reverted to graphite. This Account introduces only a narrow area of materials chemistry, and many applications of graphene and its derivatives can be expected as researchers exploit this burgeoning field.
Keyphrases