Login / Signup

NIR Fluorescent Probe for In Situ Bioimaging of Endogenous H2S in Rice Roots under Al3+ and Flooding Stresses.

Jian WangHui XieHaoyang LiRong WangBo ZhangTianrui RenJianli HuaNan Chen
Published in: Journal of agricultural and food chemistry (2021)
Hydrogen sulfide (H2S) is one of the typical reactive sulfur species, which exhibits an important role in regulating both physiological and pathological processes. Recent studies indicate that H2S also serves as a key signaling molecule in a broad range of regulatory processes in plants. However, in situ imaging and detection of the levels of H2S in plant tissues remains a challenge. In this work, a NIR fluorescent probe (HBTP-H2S) was synthesized to achieve H2S imaging in living plant tissues. HBTP-H2S exhibited high sensitivity toward H2S with a large Stokes shift (250 nm). HBTP-H2S could be applied to HeLa cells to detect the fluctuation of endogenous H2S levels in response to physiological stimulations. Importantly, HBTP-H2S was utilized for direct H2S imaging of rice roots and revealed the upregulation of H2S signaling in response to aluminum ions and flooding stresses. Our work thus provides a new tool to investigate H2S-involved signal interaction and protective resistance of crops under environmental stresses.
Keyphrases