Login / Signup

Influence of Oblique Angle Deposition on Porous Polymer Film Formation.

Stacey BachellerNicholas A WelchertMalancha Gupta
Published in: Langmuir : the ACS journal of surfaces and colloids (2023)
In this study, we applied oblique angle deposition to a modified initiated chemical vapor deposition (iCVD) process to synthesize porous poly(methacrylic acid) (PMAA) films. During the modified iCVD process, frozen monomer molecules are first captured on a cooled substrate, then polymerization occurs via a free radical polymerization mechanism, and finally, the excess monomer is sublimated, resulting in a porous polymer film. We found that delivering the monomer through an extension at an oblique angle resulted in porous films with three morphological regions. Region 1 is located nearest to the monomer extension outlet and consists of porous polymer pillars; region 2 consists of densified pillars, which occur due to the recapturing and polymerization of the sublimated monomer; and region 3 is located furthest from the monomer extension outlet and consists of dendritic structures, which occur due to low monomer concentration. We investigated the role of substrate temperature and monomer deposition time on the growth process. We found that changing the extension angle influenced the location of the regions and the film coverage across the substrate. Our results provide useful guidelines for tuning the structures within porous polymer films by varying the angle of monomer delivery.
Keyphrases
  • molecularly imprinted
  • high resolution
  • room temperature
  • metal organic framework
  • highly efficient
  • reduced graphene oxide
  • solid phase extraction