Pd-Iminocarboxylate Complexes and Their Behavior in Ethylene Polymerization.
Satej S DeshmukhShahaji R GaikwadRajesh G GonnadeSatish P PandoleSamir H ChikkaliPublished in: Chemistry, an Asian journal (2020)
Designing co-catalyst-free late transition metal complexes for ethylene polymerization is a challenging task at the interface of organometallic and polymer chemistry. Herein, a set of new, co-catalyst-free, single-component catalytic systems for ethylene polymerization have been unraveled. Treatment of anthranilic acid with various aldehydes produced four iminocarboxylate ligands (L1-L4) in very good to excellent yield (75-92 %). The existence of 2-((2-methoxybenzylidene)amino) benzoic acid (L1) has been unambiguously demonstrated using NMR spectroscopy, MS and single-crystal X-ray diffraction. A neutral Pd-iminocarboxylate complex [{N O}PdMe(L1)] (N O=κ2 -N,O-ArCHNC6 H4 CO2 with Ar=2-MeOC6 H4 ) C1 was prepared by treating stoichiometric amount of L1.Na with palladium precursor. The identity of C1 was confirmed by 1-2D NMR spectroscopy and single-crystal X-ray diffraction studies. Along the same lines, palladium complexes C2-C4 were prepared from ligands L2-L4 respectively. In-situ high-pressure NMR investigations revealed that these Pd complexes are amenable to ethylene insertion and undergo facile β-H elimination to produce propylene. These palladium complexes were then evaluated in ethylene polymerization reaction and various reaction parameters were screened. When C1-C4 were exposed to ethylene pressures of 10-50 bar, formation of low-molecular-weight polyethylene was observed.
Keyphrases
- reduced graphene oxide
- high resolution
- highly efficient
- transition metal
- mass spectrometry
- multiple sclerosis
- magnetic resonance
- metal organic framework
- ionic liquid
- electron microscopy
- ms ms
- magnetic resonance imaging
- crystal structure
- computed tomography
- carbon dioxide
- dual energy
- quantum dots
- solid state
- smoking cessation