Evaluation of deep learning techniques for identification of sarcoma-causing carcinogenic mutations.
Asghar Ali ShahFahad AlturiseTamim AlkhalifahYaser Daanial KhanPublished in: Digital health (2022)
The abnormal growth of human healthy cells is called cancer. One of the major types of cancer is sarcoma, mostly found in human bones and soft tissue cells. It commonly occurs in children. According to a survey of the United States of America, there are more than 17,000 sarcoma patients registered each year which is 15% of all cancer cases. Recognition of cancer at its early stage saves many lives. The proposed study developed a framework for the early detection of human sarcoma cancer using deep learning Recurrent Neural Network (RNN) algorithms. The DNA of a human cell is made up of 25,000 to 30,000 genes. Each gene is represented by sequences of nucleotides. The nucleotides in a sequence of a driver gene can change which is termed as mutations. Some mutations can cause cancer. There are seven types of a gene whose mutation causes sarcoma cancer. The study uses the dataset which has been taken from more than 134 samples and includes 141 mutations in 8 driver genes. On these gene sequences RNN algorithms Long and Short-Term Memory (LSTM), Gated Recurrent Units and Bi-directional LSTM (Bi-LSTM) are used for training. Rigorous testing techniques such as Self-consistency testing, independent set testing, 10-fold cross-validation test are applied for the validation of results. These validation techniques yield several metrics such as Area Under the Curve (AUC), sensitivity, specificity, Mathew's correlation coefficient, loss, and accuracy. The proposed algorithm exhibits an accuracy of 99.6% with an AUC value of 1.00.
Keyphrases
- papillary thyroid
- deep learning
- endothelial cells
- squamous cell
- early stage
- neural network
- machine learning
- genome wide
- chronic kidney disease
- magnetic resonance
- radiation therapy
- computed tomography
- newly diagnosed
- bone marrow
- cell proliferation
- childhood cancer
- convolutional neural network
- lymph node
- prognostic factors
- cell cycle arrest
- ejection fraction
- working memory
- patient reported outcomes
- sentinel lymph node
- diffusion weighted imaging
- structural basis