Direct Synthesis of Photosensitizable Bacterial Cellulose as Engineered Living Material for Skin Wound Repair.
Xingang LiuMin WuMeng WangQida HuJingjing LiuYukun DuanJie LiuPublished in: Advanced materials (Deerfield Beach, Fla.) (2022)
Living materials based on bacterial cellulose (BC) represent a natural and promising candidate for wound dressing. Both physical adsorption and chemical methods have been applied to BC for realizing antibacterial function. However, effective and long-lasting incorporation of bactericidal moieties to BC remains challenging. Herein, a Komagataeibacter sucrofermentans-based direct synthetic method to fabricate photosensitizer-grafted BC through in situ bacterial metabolism in the presence of TPEPy-modified glucose is explored. The results verify that the direct biosynthesis method is efficient and convenient to endow BC with outstanding fluorescence and light-triggered photodynamic bactericidal activity for skin wound repair. This work presents a new approach to fabricate eco-friendly and active wound dressing with light-controlled bactericidal activity by microbial metabolism. The successful modification of the glucose carbon source of microorganisms also offers insights for biosyntheses of other living materials through microbial metabolism.