Login / Signup

N, P Self-Doped Porous Carbon Material Derived from Lotus Pollen for Highly Efficient Ethanol-Water Mixtures Photocatalytic Hydrogen Production.

Jing-Wen ZhouXia JiangYan-Xin ChenShi-Wei LinCan-Zhong Lu
Published in: Nanomaterials (Basel, Switzerland) (2022)
Porous biochar materials prepared with biomass as a precursor have received widespread attention. In this work, lotus pollen (LP) was used as the carbon source, a variety of the pollen carbon photocatalyst were prepared by a two-step roasting method. A series of characterizations were carried out on the prepared samples, and it was found that the average particle size was about 40 μm. They also exhibit a typical amorphous carbon structure and a porous structure with a network-like interconnected surface. The photocatalytic hydrogen production performances of lotus pollen carbon (LP-C) and commercial carbon black (CB) were measured under the full spectrum illumination. LP-C-600 showed the best hydrogen production performance (3.5 μmol·g -1 ·h -1 ). In addition, the photoelectrochemical (PEC) measurement results confirmed that the LP-C materials show better incident photon-current efficiency (IPCE) performance than the CB materials in the neutral electrolyte. This is because the unique surface wrinkling, hierarchical porous structure, and the N, P self-doping behavior of the LP-C samples are able to improve the light utilization efficiency and the carrier separation/transfer efficiency, thereby further improving the overall hydrogen production efficiency.
Keyphrases
  • highly efficient
  • visible light
  • metal organic framework
  • quantum dots
  • cardiovascular disease
  • type diabetes
  • ionic liquid
  • tissue engineering
  • label free
  • solid state