Login / Signup

Giant Second Harmonic Generation Enhancement by Ag Nanoparticles Compactly Distributed on Hexagonal Arrangements.

Alejandro Gómez-TorneroLuisa E BausáMariola O Ramírez
Published in: Nanomaterials (Basel, Switzerland) (2021)
The association of plasmonic nanostructures with nonlinear dielectric systems has been shown to provide useful platforms for boosting frequency conversion processes at metal-dielectric interfaces. Here, we report on an efficient route for engineering light-matter interaction processes in hybrid plasmonic-χ(2) dielectric systems to enhance second harmonic generation (SHG) processes confined in small spatial regions. By means of ferroelectric lithography, we have fabricated scalable micrometric arrangements of interacting silver nanoparticles compactly distributed on hexagonal regions. The fabricated polygonal microstructures support both localized and extended plasmonic modes, providing large spatial regions of field enhancement at the optical frequencies involved in the SHG process. We experimentally demonstrate that the resonant excitation of the plasmonic modes supported by the Ag nanoparticle-filled hexagons in the near infrared region produces an extraordinary 104-fold enhancement of the blue second harmonic intensity generated in the surface of a LiNbO3 crystal. The results open new perspectives for the design of efficient hybrid plasmonic frequency converters in miniaturized devices.
Keyphrases
  • energy transfer
  • single molecule
  • silver nanoparticles
  • quantum dots
  • visible light
  • label free
  • minimally invasive
  • high resolution
  • high intensity
  • mass spectrometry
  • high speed
  • iron oxide