Login / Signup

Stabilizing polymer electrolytes in high-voltage lithium batteries.

Snehashis ChoudhuryZhengyuan TuA NijamudheenMichael J ZachmanSanjuna StalinYue DengQing ZhaoDuylinh VuLena F KourkoutisJose L Mendoza-CortesLynden A Archer
Published in: Nature communications (2019)
Electrochemical cells that utilize lithium and sodium anodes are under active study for their potential to enable high-energy batteries. Liquid and solid polymer electrolytes based on ether chemistry are among the most promising choices for rechargeable lithium and sodium batteries. However, uncontrolled anionic polymerization of these electrolytes at low anode potentials and oxidative degradation at working potentials of the most interesting cathode chemistries have led to a quite concession in the field that solid-state or flexible batteries based on polymer electrolytes can only be achieved in cells based on low- or moderate-voltage cathodes. Here, we show that cationic chain transfer agents can prevent degradation of ether electrolytes by arresting uncontrolled polymer growth at the anode. We also report that cathode electrolyte interphases composed of preformed anionic polymers and supramolecules provide a fundamental strategy for extending the high voltage stability of ether-based electrolytes to potentials well above conventionally accepted limits.
Keyphrases