Login / Signup

Developing Nanosuspension Loaded with Azelastine for Potential Nasal Drug Delivery: Determination of Proinflammatory Interleukin IL-4 mRNA Expression and Industrial Scale-Up Strategy.

Yasir MehmoodHira ShahidMuhammad AbbasUmar FarooqSultan M AlshehriPrawez AlamFaiyaz ShakeelMohammed M Ghoneim
Published in: ACS omega (2023)
In order to increase bioavailability and intranasal absorbance, the current work set out to create azelastine nasal spray based on nanosuspension. Chondroitin was utilized as a polymer to prepare azelastine nanosuspension through the precipitation procedure. A size of 500 nm and a polydispersity index of 0.276 with a negative potential (-20 mV) were achieved. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, thermal analysis including differential scanning calorimetry and thermogravimetric analysis, in vitro release, and diffusion studies were used to characterize the optimized nanosuspension. MTT assay was used to assess the viability of the cells, and hemolysis assay was used to assess the blood compatibility. Using RNA extraction and reverse transcription polymerase chain reaction, the levels of the anti-inflammatory cytokine IL-4, which is most closely related to cytokines in allergic rhinitis, were measured in mouse lungs. The drug dissolution and diffusion study indicated 2.0-fold increase compared to pure reference sample. Therefore, the azelastine nanosuspension could be suggested as a practical and simple nanosystem for intranasal delivery with improved permeability and bioavailability. The outcome obtained in this study indicated that azelastine nanosuspension has great potential to treat allergic rhinitis as intranasal treatment.
Keyphrases