Login / Signup

Improved Characterization of Aqueous Single-Walled Carbon Nanotube Dispersions Using Dynamic Light Scattering and Analytical Centrifuge Methods.

Anastasiya KrasulinaYuliya MyasnikovaVladimir SaikMikhail PredtechenskySergei N Smirnov
Published in: ACS omega (2023)
Aqueous dispersions of single-walled carbon nanotubes (SWCNTs) with a surfactant were studied by using a combination of differential sedimentation and dynamic light scattering methods. When applied to elongated particles like SWCNTs, the differential sedimentation method makes it possible to measure their diameters in dispersions, while the dynamic light scattering method allows to measure their lengths. Both methods have logarithmic dependence on the ratio between the length and diameter of the particles, and their simultaneous use improves the accuracy of measuring particles' dimensions. It was shown that sonication of dispersions leads not only to unbundling of agglomerates into individual nanotubes but also to a decrease in their lengths and the appearance of new defects detectable in increasing the D/G ratio in the Raman spectra. Unbundling into individual nanotubes occurs after exposure to 1 kWh/L energy density, and the single nanotube diameter with SDBS is ca. 3.3 nm larger than that of the naked nanotubes. Conductivity of thin SWCNT films made out of individual nanotubes demonstrates a power law dependence with the exponent close to the theoretical one for rigid rods.
Keyphrases
  • carbon nanotubes
  • walled carbon nanotubes
  • ionic liquid
  • photodynamic therapy
  • room temperature
  • mass spectrometry
  • liquid chromatography
  • molecular dynamics
  • optical coherence tomography