Login / Signup

An Area-Efficient and Highly Linear Reconfigurable Continuous-Time Filter for Biomedical Sensor Applications.

Jinyong ZhangShing-Chow ChanHui LiNannan ZhangLei Wang
Published in: Sensors (Basel, Switzerland) (2020)
This paper proposes a compact, high-linearity, and reconfigurable continuous-time filter with a wide frequency-tuning capability for biopotential conditioning. It uses an active filter topology and a new operational-transconductance-amplifier (OTA)-based current-steering (CS) integrator. Consequently, a large time constant τ , good linearity, and linear bandwidth tuning could be achieved in the presented filter with a small silicon area. The proposed filter has a reconfigurable structure that can be operated as a low-pass filter (LPF) or a notch filter (NF) for different purposes. Based on the novel topology, the filter can be readily implemented monolithically and a prototype circuit was fabricated in the 0.18 μm standard complementary-metal-oxide-semiconductor (CMOS) process. It occupied a small area of 0.068 mm2 and consumed 25 μW from a 1.8 V supply. Measurement results show that the cutoff frequency of the LPF could be linearly tuned from 0.05 Hz to 300 Hz and the total-harmonic-distortion (THD) was less than -76 dB for a 2 Hz, 200 mVpp sine input. The input-referred noises were 5.5 μVrms and 6.4 μVrms for the LPF and NF, respectively. A comparison with conventional designs reveals that the proposed design achieved the lowest harmonic distortion and smallest on-chip capacitor. Moreover, its ultra-low cutoff frequency and relatively linear frequency tuning capability make it an attractive solution as an analog front-end for biopotential acquisitions.
Keyphrases
  • signaling pathway
  • oxidative stress
  • cell proliferation
  • high resolution
  • room temperature
  • mass spectrometry
  • high throughput
  • toll like receptor
  • low cost