Reconstructing the reflectivity of liquid surfaces from grazing incidence X-ray off-specular scattering data.
Chen ShenHonghu ZhangBenjamin M OckoPublished in: Journal of applied crystallography (2024)
The capillary wave model of a liquid surface predicts both the X-ray specular reflection and the diffuse scattering around it. A quantitative method is presented to obtain the X-ray reflectivity (XRR) from a liquid surface through the diffuse scattering data around the specular reflection measured using a grazing incidence X-ray off-specular scattering (GIXOS) geometry at a fixed horizontal offset angle with respect to the plane of incidence. With this approach the entire Q z -dependent reflectivity profile can be obtained at a single, fixed incident angle. This permits a much faster acquisition of the profile than with conventional reflectometry, where the incident angle must be scanned point by point to obtain a Q z -dependent profile. The XRR derived from the GIXOS-measured diffuse scattering, referred to in this paper as pseudo-reflectivity, provides a larger Q z range compared with the reflectivity measured by conventional reflectometry. Transforming the GIXOS-measured diffuse scattering profile to pseudo-XRR opens up the GIXOS method to widely available specular XRR analysis software tools. Here the GIXOS-derived pseudo-XRR is compared with the XRR measured by specular reflectometry from two simple vapor-liquid interfaces at different surface tension, and from a hexadecyltri-methyl-ammonium bromide monolayer on a water surface. For the simple liquids, excellent agreement (beyond 11 orders of magnitude in signal) is found between the two methods, supporting the approach of using GIXOS-measured diffuse scattering to derive reflectivities. Pseudo-XRR obtained at different horizontal offset angles with respect to the plane of incidence yields indistinguishable results, and this supports the robustness of the GIXOS-XRR approach. The pseudo-XRR method can be extended to soft thin films on a liquid surface, and criteria are established for the applicability of the approach.