Peptide Sequence-Dependent Gene Expression of PEGylated Peptide/DNA Complexes.
Mikiko UenoSatoshi YamauchiDaiki KumekawaYuichi YamasakiPublished in: Molecular pharmaceutics (2019)
Oligolysine-based PEG-peptides with 15 or 20 amino acid residues including two cysteines were synthesized to formulate cross-linked polyplex micelles (PMs) incorporating luciferase-coding plasmid DNA (pDNA). Two cysteine residues were separately allocated at the C-terminal, center, or N-terminal of peptide moieties. Although TEM observation showed that all PEG-peptides condensed pDNA into rod-like or toroidal morphologies, the rod length distribution of PMs was affected by both the amino acid sequence and the peptide length of PEG-peptides. In comparison to the cysteine-uninstalled PEG-peptides, the cysteine-installed PEG-peptides exhibited a reductive environment-responsive pDNA release, which was observed in a gel retardation assay. From physicochemical characterizations, a relationship between the amino acid sequence and the in vitro gene expression efficacy of PMs in a cell-free protein synthesis system has been clearly demonstrated. Finally, the cell-based assay using HeLa cells has been tested, and the differences between both results of cell-free and cell-based systems are discussed.