Login / Signup

A fast pace-of-life is traded off against a high thermal performance.

Nedim TüzünRobby Stoks
Published in: Proceedings. Biological sciences (2022)
The integration of life-history, behavioural and physiological traits into a 'pace-of-life syndrome' is a powerful concept in understanding trait variation in nature. Yet, mechanisms maintaining variation in 'pace-of-life' are not well understood. We tested whether decreased thermal performance is an energetic cost of a faster pace-of-life. We characterized the pace-of-life of larvae of the damselfly Ischnura elegans from high-latitude and low-latitude regions when reared at 20°C or 24°C in a common-garden experiment, and estimated thermal performance curves for a set of behavioural, physiological and performance traits. Our results confirm a faster pace-of-life (i.e. faster growth and metabolic rate, more active and bold behaviour) in the low-latitude and in warm-reared larvae, and reveal increased maximum performance, R max , but not thermal optimum T opt , in low-latitude larvae. Besides a clear pace-of-life syndrome integration at the individual level, larvae also aligned along a 'cold-hot' axis. Importantly, a faster pace-of-life correlated negatively with a high thermal performance (i.e. higher T opt for swimming speed, metabolic rate, activity and boldness), which was consistent across latitudes and rearing temperatures. This trade-off, potentially driven by the energetically costly maintenance of a fast pace-of-life, may be an alternative mechanism contributing to the maintenance of variation in pace-of-life within populations.
Keyphrases
  • genome wide
  • zika virus
  • drosophila melanogaster