Development of End-to-End Artificial Intelligence Models for Surgical Planning in Transforaminal Lumbar Interbody Fusion.
Anh Tuan BuiHieu LeTung Thanh HoangGiam Minh TrinhHao-Chiang ShaoPei-I TsaiKuan-Jen ChenKevin Li-Chun HsiehE Wen HuangChing-Chi HsuMathew MathewChing-Yu LeePo-Yao WangTsung-Jen HuangMeng-Huang WuPublished in: Bioengineering (Basel, Switzerland) (2024)
Transforaminal lumbar interbody fusion (TLIF) is a commonly used technique for treating lumbar degenerative diseases. In this study, we developed a fully computer-supported pipeline to predict both the cage height and the degree of lumbar lordosis subtraction from the pelvic incidence (PI-LL) after TLIF surgery, utilizing preoperative X-ray images. The automated pipeline comprised two primary stages. First, the pretrained BiLuNet deep learning model was employed to extract essential features from X-ray images. Subsequently, five machine learning algorithms were trained using a five-fold cross-validation technique on a dataset of 311 patients to identify the optimal models to predict interbody cage height and postoperative PI-LL. LASSO regression and support vector regression demonstrated superior performance in predicting interbody cage height and postoperative PI-LL, respectively. For cage height prediction, the root mean square error (RMSE) was calculated as 1.01, and the model achieved the highest accuracy at a height of 12 mm, with exact prediction achieved in 54.43% (43/79) of cases. In most of the remaining cases, the prediction error of the model was within 1 mm. Additionally, the model demonstrated satisfactory performance in predicting PI-LL, with an RMSE of 5.19 and an accuracy of 0.81 for PI-LL stratification. In conclusion, our results indicate that machine learning models can reliably predict interbody cage height and postoperative PI-LL.
Keyphrases
- minimally invasive
- deep learning
- machine learning
- artificial intelligence
- body mass index
- convolutional neural network
- big data
- patients undergoing
- end stage renal disease
- high resolution
- newly diagnosed
- risk factors
- chronic kidney disease
- dual energy
- patient reported outcomes
- optical coherence tomography
- rectal cancer
- atrial fibrillation