Login / Signup

Non-syndromic congenital sideroblastic anaemia; phenotype, and genotype of 15 Indian patients.

Rashmi DongerdiyePrabhakar S KedarArati SaptarshiAbhilasha A SampagarChandrakala ShanmukhaiahSangeeta MudaliarPurva KanvindeMahesh S DesaiManisha Rajan Madkaikar
Published in: Annals of hematology (2024)
Sideroblastic anaemias are a diverse group of congenital and acquired bone marrow failure disorders marked by the presence of ring sideroblasts, ineffective erythropoiesis, and systemic iron overload. Congenital Sideroblastic anaemia (CSA) is mainly caused by gene mutations associated with heme synthesis, iron-sulfur [Fe-S] cluster, and mitochondrial protein synthesis pathways. The most prevalent form of CSA is caused by mutations in the erythroid-specific -amino levulinate synthase (ALAS2) gene, which encodes the first enzyme in the heme synthesis pathway in red blood cells. The second most prevalent form of CSA is caused by a mutation in the Solute carrier family 25 member 38 (SLC25A38) gene, which codes for an erythroid-specific protein of the inner mitochondrial membrane. Additionally, 15-20 genes are altogether associated with CSA. In this study, we aim to identify the CSA patients, understand their genetics and establish genotype-phenotype correlation. We have identified fifteen cases of CSA using our targeted NGS (t-NGS) panel. The major clinical findings in our cohort were microcytic anaemia, ring sideroblasts, and dyserythropoiesis in the bone marrow. Currently, two patients are responsive to pyridoxine, while the rest are on blood transfusion support. We have identified ten variants in three different genes of CSA (ALAS2, SLC25A38 & HSPA9). Five patients harbour four hemizygous variants- p.Ala282Ser, p.Arg170Cys, p.Arg204Gln and exon 2 duplication in the ALAS2 gene. In seven patients, we have identified three homozygous mutations - p.Pro190Arg, p.Arg187Gln and p.Arg134Cys in the SLC25A38 gene. These mutations have been predominantly identified in the European population. Three patients revealed three heterozygous variants p. Thr463Ile, D326Tyr, and Arg284Trp in the HSPA9 gene. PyMoL was used to evaluate the functional effects of these variations and understand their effect on the structure of the protein. We believe that by combining a bone marrow examination with genetic sequencing, CSA patients can acquire a definitive diagnosis.
Keyphrases