Login / Signup

Temporal processing properties of auditory DUM neurons in a bush-cricket.

Andreas StumpnerPaule Chloé LefebvreMarvin SeifertTim Daniel Ostrowski
Published in: Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology (2019)
Insects with ears process sounds and respond to conspecific signals or predator cues. Axons of auditory sensory cells terminate in mechanosensory neuropils from which auditory interneurons project into (brain-) areas to prepare response behaviors. In the prothoracic ganglion of a bush-cricket, a cluster of local DUM (dorsal unpaired median) neurons has recently been described and constitutes a filter bank for carrier frequency. Here, we demonstrate that these neurons also constitute a filter bank for temporal patterns. The majority of DUM neurons showed pronounced phasic-tonic responses. The transitions from phasic to tonic activation had different time constants in different DUM neurons. Time constants of the membrane potential were shorter in most DUM neurons than in auditory sensory neurons. Patterned stimuli with known behavioral relevance evoked a broad range of responses in DUM neurons: low-pass, band-pass, and high-pass characteristics were encountered. Temporal and carrier frequency processing were not correlated. Those DUM neurons producing action potentials showed divergent processing of temporal patterns when the graded potential or the spiking was analyzed separately. The extent of membrane potential fluctuations mimicking the patterned stimuli was different between otherwise similarly responding neurons. Different kinds of inhibition were apparent and their relevance for temporal processing is discussed.
Keyphrases