Potential of water lettuce (Pistia stratiotes L.) for phytoremediation: physiological responses and kinetics of zinc uptake.
Ana Carolina Dornelas RodriguesMarcus Vinicius de Castro RochaErica Souto Abreu LimaCamila Ferreira de PinhoAndré Marques Dos SantosFabiana Soares Dos SantosNelson Moura Brasil do Amaral SobrinhoPublished in: International journal of phytoremediation (2020)
Two greenhouse experiments were carried out to evaluate the phytoremediation potential, physiological responses and zinc (Zn) uptake kinetics of water lettuce (Pistia stratiotes L.). The phytoextraction experiment evaluated four doses of Zn (0.7 mg L-1 - represented the Zn in the nutrient solution, 1.8, 18 and 180 mg L-1 - corresponded to ten, hundred and a thousand times, respectively, the maximum permitted content for fresh water) at four different culture times (24, 48, 72 and 168 h). The Zn uptake kinetics of water lettuce were evaluated at two concentrations of Zn (1.8 and 18 mg L-1). The water lettuce attained the highest percentage removal at the lowest evaluated doses (0.7 and 1.8 mg L-1), reaching a maximum value of approximately 72% removal (when cultivated in 1.8 mg L-1 of Zn after 168 h of culture). The Zn uptake increased with culture time, increasing the synthesis of carotenoids at all doses evaluated. The highest doses of Zn resulted in a reduction in photosynthetic efficiency. The results showed a high potential of water lettuce to absorb and tolerate Zn, accumulating preferably in the roots, demonstrating that these plants are able to absorb large quantities of Zn in contaminated solution.