Membranes Based on Polyvinylidene Fluoride and Radiation-Grafted Sulfonated Polystyrene and Their Performance in Proton-Exchange Membrane Fuel Cells.
Daniil V GolubenkoOleg V KorchaginDaria Yu VoropaevaVera A BogdanovskayaAndrey B YaroslavtsevPublished in: Polymers (2022)
Proton-exchange membranes based on gamma-irradiated films of PVDF and radiation-grafted sulfonated polystyrene with an ion-exchange capacity of 1.8 meq/g and crosslinking degrees of 0 and 3% were synthesized. A solvent-free, environmentally friendly method of styrene grafting from its aqueous emulsion, with a styrene content of only 5 vol.% was used. Energy dispersive X-ray mapping analysis showed that the grafted sulfonated polystyrene is uniformly distributed throughout the membrane thickness. The obtained materials had a proton conductivity up to 132 mS/cm at 80 °C and a hydrogen permeability of up to 5.2 cm 2 /s at 30 °C, which significantly exceeded similar values for Nafion ® -212 membranes. The resulting membranes exhibited a H 2 /O 2 fuel cell peak power density of up to 0.4 W/cm 2 at 65 °C. Accelerated stability tests showed that adding a crosslinking agent could significantly increase the stability of the membranes in the fuel cells. The thermal properties and crystallinity of the membranes were investigated through differential scanning calorimetry and X-ray powder diffraction methods. The conductivity, water uptake, and mechanical properties of the membranes (stress-strain curves) were also characterized.