Login / Signup

Use of housefly (Musca domestica L.) larvae to bioconversion food waste for animal nutrition and organic fertilizer.

Zhang ChengLin YuHahan LiXiaoxun XuZhanbiao Yang
Published in: Environmental science and pollution research international (2021)
In this study, a mixed-level orthogonal array design was employed for the optimum conditions of breeding housefly larvae by food waste. The results showed that the effects of these factors on the weight of 50 larvae, larvae yield, and crude protein content were the culture substrate ratio > the breeding density > the feeding mode. The optimum conditions for the housefly larvae to convert food waste were as follows: culture substrates ratio 1:3, breeding density 10.0 g/kg, and all substance added on the first day. The optimum food waste mass reduction rate was 79.1-83.6%. The value of the essential amino acids (Eaa)/ the total amino acids (Taa) (45.1%) and E/the nonessential amino acid (Naa) values (0.83%) in the housefly larvae products met the Food and Agricultural Organization (FAO) requirements for feed protein. The crude fat content (30.1 ± 1.18%) was higher than of the housefly larvae after bioconversion of pig manure (22.0%) and the fish meal standard of China. The contents of total nutrients (N+P+K ≥ 5.5%) and heavy metals (Pb ≤ 0.40 mg/kg, Cr ≤ 1.50 mg/kg, Cd ≤ 0.40 mg/kg) in the residues of this study met the Chinese standard for organic fertilizer. Tilapia raised with the dried housefly larvae showed the best growth performance and nutrient concentrations in the experiment groups (p < 0.05). Moreover, the trace elements concentration in tilapia raised with the four kinds of feeds complied with the maximum levels of contaminants in foods in both China and WHO. These findings show that the housefly larvae products that converted food waste are suitable for use in the production of fish feed.
Keyphrases
  • amino acid
  • aedes aegypti
  • drosophila melanogaster
  • heavy metals
  • risk assessment
  • zika virus
  • mass spectrometry
  • body mass index
  • health risk
  • binding protein
  • single cell
  • drinking water
  • human health
  • nk cells