Login / Signup

Benchmarking Antioxidant-Related Properties for Gallic Acid through the Use of DFT, MP2, CCSD, and CCSD(T) Approaches.

Gabriel L C de SouzaKirk A Peterson
Published in: The journal of physical chemistry. A (2021)
We present a benchmark investigation on the O-H bond dissociation enthalpies (BDEs) and ionization potential (IP) for gallic acid (GA), a widely known polyphenolic antioxidant. These properties were determined in the gas-phase and in water through the use of density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2), coupled-cluster with single and double excitations (CCSD), and coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)). The 6-311++G(df,p), cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets were used. Regarding DFT functionals, the M06-2X provided the best agreement for the BDEs when compared to the corresponding CCSD(T)/aug-cc-pVTZ results; M06-2X was also found to be the most suitable for probing the IP for the protonated forms of GA while LC-ωPBE was the most reliable in the case of deprotonated GA. Given that these properties represent important descriptors for examining mechanisms related to the antioxidant potential of a given polyphenol, we hope that the present work can serve as a guide for computational chemists venturing in the field.
Keyphrases
  • density functional theory
  • pet ct
  • molecular dynamics
  • oxidative stress
  • anti inflammatory
  • molecular docking
  • human health
  • single molecule
  • gas chromatography
  • transition metal