Ionic Liquid Crystal-Polymer Composite Electromechanical Actuators: Design of Two-Dimensional Molecular Assemblies for Efficient Ion Transport and Effect of Electrodes on Actuator Performance.
Chengyang LiuMasafumi YoshioPublished in: ACS applied materials & interfaces (2024)
We present the development of free-standing ionic liquid crystal-polymer composite electrolyte films aimed at achieving high-frequency response electromechanical actuators. Our approach entails designing novel layered ionic liquid-crystalline (LC) assemblies by complexing a mesomorphic dimethylphosphate with either a lithium salt or a room-temperature ionic liquid through the formation of ion-dipole interactions or hydrogen bonds. These electrolytes, exhibiting room-temperature ionic conductivities on the order of 10 -4 S cm -1 and wide LC temperature ranges up to 77 °C, were successfully integrated into porous polymer networks. We systematically investigated the impact of ions and electrodes on the performance of ionic electroactive actuators. Specifically, the Li + -based liquid crystal-polymer composite actuator with PEDOT:PSS electrodes demonstrated the highest bending deformation, achieving a strain of 0.68% and exhibiting a broad frequency response up to 110 Hz, with a peak-to-peak displacement of 3 μm. In contrast, the ionic-liquid-based liquid crystal-polymer composite actuator with active carbon electrodes showcased a bending response at a maximum frequency of 50 Hz and a force generation of 0.48 mN, without exhibiting the back relaxation phenomenon. These findings offer valuable insights for advancing high-performance electromechanical systems with applications ranging from soft robotics to haptic interfaces.