Login / Signup

High mercury concentrations in steelhead/rainbow trout, sculpin, and terrestrial invertebrates in a stream-riparian food web in coastal California.

David E RundioRoberto RiveraPeter S Weiss-Penzias
Published in: Ecotoxicology (London, England) (2022)
Stream and riparian food webs are connected by cross-habitat exchanges of invertebrate prey that can transfer contaminants including mercury. Marine fog has been identified as a source of methylmercury (MeHg) to some terrestrial food webs in coastal California, suggesting that terrestrial invertebrates might have elevated MeHg relative to stream invertebrates and might lead to higher mercury exposure in fish that consume terrestrial subsidies. As an initial step to examine this possibility, we analyzed mercury concentrations in terrestrial and aquatic invertebrates and two fish species, steelhead/rainbow trout (Oncorhynchus mykiss) and coastrange sculpin (Cottus aleuticus), in a small watershed. Mean MeHg and total mercury (THg) concentrations in terrestrial invertebrates were three to four times higher than in aquatic invertebrates of the same trophic level. MeHg was >1000 ng/g dw in some individual centipede and scorpion samples, and also relatively high (100-300 ng/g dw) in some terrestrial detritivores, including non-native isopods. Mean THg in age 0 trout was 400 ng/g dw compared to 1200-1300 ng/g dw in age 1+ trout and sculpin, and the largest trout sampled had THg >3500 ng/g dw. However, the similar mercury concentrations between age 1+ trout and sculpin, despite different diet types, indicated that Hg concentrations in fish were not related simply to differences in consumption of terrestrial invertebrates. The high mercury concentrations we found in terrestrial invertebrates and fish suggest that further research on the sources and bioaccumulation of mercury is warranted in this region where O. mykiss populations are threatened.
Keyphrases
  • human health
  • climate change
  • heavy metals
  • water quality