Login / Signup

One-Pot Synthesis of pH/Redox Responsive Polymeric Prodrug and Fabrication of Shell Cross-Linked Prodrug Micelles for Antitumor Drug Transportation.

Lei LiDian LiMingzu ZhangJinlin HeJian LiuPeihong Ni
Published in: Bioconjugate chemistry (2018)
Shell cross-linked (SCL) polymeric prodrug micelles have the advantages of good blood circulation stability and high drug content. Herein, we report on a new kind of pH/redox responsive dynamic covalent SCL micelle, which was fabricated by self-assembly of a multifunctional polymeric prodrug. At first, a macroinitiator PBYP- ss- iBuBr was prepared via ring-opening polymerization (ROP), wherein PBYP represents poly[2-(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane]. Subsequently, PBYP- hyd-DOX- ss-P(DMAEMA- co-FBEMA) prodrug was synthesized by a one-pot method with a combination of atom transfer radical polymerization (ATRP) and a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction using a doxorubicin (DOX) derivative containing an azide group to react with the alkynyl group of the side chain in the PBYP block, while DMAEMA and FBEMA are the abbriviations of N, N-(2-dimethylamino)ethyl methacrylate and 2-(4-formylbenzoyloxy)ethyl methacrylate, respectively. The chemical structures of the polymer precursors and the prodrugs have been fully characterized. The SCL prodrug micelles were obtained by self-assembly of the prodrug and adding cross-linker dithiol bis(propanoic dihydrazide) (DTP). Compared with the shell un-cross-linked prodrug micelles, the SCL prodrug micelles can enhance the stability and prevent the drug from leaking in the body during blood circulation. The average size and morphology of the SCL prodrug micelles were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The SCL micelles can be dissociated under a moderately acidic and/or reductive microenvironment, that is, endosomal/lysosomal pH medium or high GSH level in the tumorous cytosol. The results of DOX release also confirmed that the SCL prodrug micelles possessed pH/reduction responsive properties. Cytotoxicity and cellular uptake analyses further revealed that the SCL prodrug micelles could be rapidly internalized into tumor cells through endocytosis and efficiently release DOX into the HeLa and HepG2 cells, which could efficiently inhibit the cell proliferation. This study provides a fast and precise synthesis method for preparing multifunctional polymer prodrugs, which hold great potential for optimal antitumor therapy.
Keyphrases
  • cancer therapy
  • drug delivery
  • drug release
  • cell proliferation
  • stem cells
  • mesenchymal stem cells
  • high resolution
  • molecular dynamics
  • signaling pathway
  • electron transfer
  • hyaluronic acid